
Today, you have been hearing about all sorts of clever 
new languages, language features, and uses of 

language features …

And now for something 
completely different …

Now, we are going to tell you about a boring language 
with no new language features, or uses of language 

features …

And now for something 
completely different …

Grace A New Educational

Object-O!ented Programming 

Langua"

James Noble

Andrew Black

Kim Bruce

3

Suppose:

You are going to teach object-oriented 
programming to 1st year students.

What language would you choose?

4



Which language?

ECOOP 2010: we don't like the available options

“Professional” languages too complex for 
teaching (Scala, C#, Java …)

Smalltalk doesn't support static typing; 
Python has inconsistent method syntax, no 
encapsulation

Group decision: design a modern object-oriented 
language specifically for teaching

5

High Level Goal
"A Haskell for OO"

Integrate proven newer ideas in 
programming languages into a simple 
language for teaching 

language features represent key concepts 
cleanly

allow students to focus on the essential, rather 
than accidental, complexities of programming 
and modelling.

6

Objectives
Low overhead for simple programs

Good IDE support for novices

Simple semantic model

Support a variety of approaches to teaching

Objects-first and objects-late

Untyped, Typeful and Gradually-typed

Easy transition to other languages

7

Best of 20th Century-Technology

Closures

Assertions, unit testing, traces, and tools for 
finding errors

High level constructs for concurrency

Support for immutable data

Generics (done right)

8



Influences

Static world:

Eiffel, Java, C#, Scala, ...

Dynamic world:

Smalltalk, Python, Scheme/Racket, ...

9

Simplest Programs
Hello, World!

print "Hello, World"

“Top level” code is considered to be inside 
the “default object”

object { 
! print "Hello, World" 
}

An object with 0 methods and 1 statement

10

Object can contain code that is executed when created

Simple methods

Methods can also be defined and used at the “top 
level”:

method celsiusToFahrenheit (temp) {
        ((temp * 9) / 5) + 32
}
print "20° Celsius is {celsiusToFahrenheit 20}° Fahrenheit"

11

Types are optional

The same code with type annotations:

method celsiusToFahrenheit (temp: Number) -> Number {
        ((temp * 9) / 5) + 32
}
print "20° Celsius is {celsiusToFahrenheit 20}° Fahrenheit"

12

‣ Programmer decides whether typing is static, 
dynamic or …

‣ All options are type-safe



Clean Concepts

numbers

23 2x10111  1.75   1.414214   -1 ! (all exact)

methods on numbers

20 + 43!! 7/4    20.factorial     (all exact)

2.sqrt   π! ! ! (approximate)

 

13

Objects

object {
! method radius { 5 }
! method area { (radius^2)*π }
}

14

constant binding

def cost = quantity * unitPrice

def disk = object {
! def radius = 5 
! method area { (radius^2)*π }
}

15

constants in objects are accessed as methods

disk.radius!! ! ! answers 5
disk.area!! ! ! ! answers ~78.53981…

So, it doesn't matter if we define

def disk = object {
! def radius = 5 
! method area { (radius^2)*π }}

or
def disk' = object {
! method radius { 5 }
! method area { (radius^2)*π }}

16



variable binding

var sum := 0

var speed := 2

var invoiceDate := aDate.today

methods and blocks can have temporary 
variables

objects can have instance variables

17

Instance variables

def adjustableDisk = object {
! var radius := 5
! method area { (radius^2)*π }}

Instance variables bindings can be changed 
using methods (unless they are confidential):

adjustableDisk.radius := 1

18

the method is named 
“radius:=”

object factories:

def aDisk = object {
! method ofRadius(r) {
! ! object {
! ! ! method radius { r }
! ! ! method area { (radius^2)*π }
! ! ! method > (other) { 
! ! ! ! radius > other.radius }
! ! }
! }
}

def myDisk = aDisk.ofRadius(7)

def yourDisk = aDisk.ofRadius(8)

19

Classes codify factories:

class aDisk.ofRadius(r) {
! ! ! method radius { r }
! ! ! method area { (radius^2)*π }
! ! ! method > (other) { 
! ! ! ! radius > other.radius }
! ! }

def myDisk = aDisk.ofRadius(7)

def yourDisk = aDisk.ofRadius(8)

20



Object composition:

object { 
! ! def hole = aDisk.ofRadius (h/2)
! ! def outside = aDisk.ofRadius (d/2)
! ! method area { outside.area - hole.area }
}

class aWasher.holeDiameter (h) outerDiameter (d) {
! ! def hole = aDisk.ofRadius (h/2)
! ! def outside = aDisk.ofRadius (d/2)
! ! method area { outside.area - hole.area }
}

21

Grace supports multipart method names (“mixfix”)

Object inheritance:

def cylinder = object { 
! ! inherits aDisk.ofRadius (r)
! ! def height = h
! ! method volume { area * height }
}

class aCylinder.baseRadius (r) height (h) {
! ! inherits aDisk.ofRadius (r)
! ! def height = h
! ! method volume { area * height }
}

22

Returning multiple results

Grace does not support multiple results.  But 
it’s easy to return an object:

method split (filename) {
! ! def dot = filename.indexOf(".")
! ! object { 
! ! ! ! def base = filename.upto (dot-1)
! ! ! ! def extension = filename.from (dot+1) 
! ! }
}

23

Grace answers an object with 2 methods

Closures

With or without parameters:

{ print "hello" }

{ x,y -> print ("adding " ++ x ++ " to " ++ y ++
" gives " ++ (x+y))} 

represented by objects with “apply” method

object { method apply(x,y) { print ... }}

Real lexical scope



Building Control 
Structures

Closures support definition of control 
constructs in libraries:

class List {
    method forEach (actionClosure) {...}
}

myList.forEach {x -> ...}

Delayed Evaluation 
Visible

if ( someCond ) then { C } else { D }

while { someCond } do { C }

if ( someCond ) then { C } else {
     {if ( otherCond ) { D } else { E }}

Other Grace Features

Types (= interfaces) ≠ classes
Visibility: public & confidential

Support for immutable objects

Equals & hashcode built-in (like Eclipse)

Number consists of Rationals & Binary64 floats

Typing Disciplines
Experimentalist (flower child):

Dynamic typing: Do what you want — we’ll make 
sure it’s safe at run-time ...

TRC regulated:
Static typing:  We’ll make sure everything is safe 
before we let you do it.

But semantics of type-safe programs are 
same either way.

... though some may not be allowed by TRC.

28



All Disciplines Interoperate
Mixing disciplines helps students/
programmers migrate from dynamically to 
statically typed languages.

What does a type annotation mean in a 
dynamically typed language?

Represents a claim - generates a dynamic check

like “assert s.nonempty” 

What does a type annotation mean in a 
statically typed language?

Represents provably correct assertion

29

Advanced Features

Pattern Matching

31

method matchTest (x: Number) {
    match(x) 
        case {1 -> “one”}
        case {2 -> “two”}
        case {_ -> “lots”}
} 

Variant Types

Object types don’t contain null value

Avoid Hoare’s “billion dollar mistake”

Construct as needed from singleton and 
variant types:

def notThere = object { method asString {...}...}

type Result = String | notThere



Using a variant

33

method doSomething(key: KeyType) {   
   match(table.valueOf(key)) 
       case {v:String -> 
                 out.println(... ++ v)
                 lastValue := v 
       case {notThere -> 
                 out.println(... ++ " is empty")
       }
}

Provide more powerful pattern matching?

Language Levels

Accomplished via libraries

Libraries package together classes and 
objects

“use” object or class ⇒ inherit public features

Need to develop useful pedagogical IDEs

34

Why Consider Using Grace?

Clean Syntax

Simple uniform semantic model
no static features, no overloading, no null, etc.

Everything is an object (even lambdas)

Modern features
Generics done right, closures, case/pattern matching

Syntax supporting design of control structures

35

Why Consider Using Grace?

Easy transition between dynamic & static 
type-checking 

High level support for parallelism and 
concurrency (planned)

Likely adopt concurrency constructs similar to 
those in Habanero Java at Rice:

async{stmts}, finish {stmts}, futures f := async{...}, 
forall(...) {stmts}, isolated{stmts} 

Support for immutable objects

36



Current State of Grace
2011:  0.1, 0.2 and 0.3 language releases, prototype 
implementations ✔

3 implementations in progress, spec at 0.35

2012: 0.8 language spec, mostly complete 
implementations

2013: 0.9 language spec, reference implementation, 
experimental classroom use

2014: 1.0 language spec, robust implementations, 
textbooks, initial adopters for CS1/CS2

2015: ready for general adoption

37

Help!

Supporters

Programmers

Implementers

Library Writers

IDE Developers!!!! 

Testers 

Teachers

Students

Tech Writers

Textbook Authors

Blog editors

Community Builders

38

Information, blog, discussion:

http://www.gracelang.org

Try Grace in your browser:

http://
homepages.ecs.vuw.ac.nz/
~mwh/minigrace/js/

39


